Tuesday, June 28, 2011

Selling Renewable Energy (Solar Etc.) Without Incentives


 

Selling Renewable Energy (Solar Etc.) Without Incentives

In short, we need to market solar as an investment that will save money while you own it and return most or all of your investment when you sell the building it's sitting on.

Chances are, as natural gas and oil prices go up, there will be a corresponding jump in your monthly electricity bill. So, instead of promoting a solar power system based on today's savings in electricity, we need to have easily understandable projections on what the savings will be over the life of a system. These numbers need to reflect what's really happening to the cost of energy!
Here are some ideas I'd like to share. First, we need to find a way to make renewable energy economically competitive without the tax incentives. We do this by answering the question: "What is the opportunity cost of not using solar to decrease your energy bill?"

There's something interesting I've found. There's a direct correlation among electrical rates, the cost of air conditioning a building, the heat index and the amount of sunshine on any given day. In other words, on the hottest, sunniest days, we use more electricity that costs more per kilowatt. So, why do we continue to promote average hours of solar production, when in fact (at least down here in California), we produce far more solar power per day during the heat of the summer when energy costs are highest, than we do in our temperate winter months when energy costs are lowest. A sound marketing approach would be to evaluate solar energy in "dollars" of production per year instead of in kilowatts. I'm sure there are some smart people out there who can match kilowatts of solar production on any given day of the year to what the rates will be (based on the projected costs of electricity).
Secondly, we should stop trying to sell a solar package as a "cost." In real estate, there is a principle that says anything affixed to real estate becomes an integral part of the real estate. Once a solar package is installed, it immediately increases the value of a property. So how can you predict how much more a building will be worth in 5-10 years with a package as opposed to without one? In the real estate appraisal business, there are three approaches to appraising a property. The market approach (what are comparable properties selling for), the reproduction cost (the cost of creating an identical building at current construction and material prices) and the actual original cost adjusted for inflation. In all three methods, there's a strong case that a system installed today will make the building worth more today and in future years.
We need some realistic numbers to predict how much more a property will be worth in the years following installation. I believe that if you sell a building 5-10 years after installing solar, you should recoup all of your investment in the system plus an added bonus. If the rumors are true, a residential system (using the market approach) adds $20 of value to a home for every $1 it saves on the electric bill.
For commercial appraisals, you would divide the income (savings) by a cap rate (which was about 9% at last report). A system that saves $2000 a year then would be worth $40,000 on a home or $25,000 on a business. But if the cost of electricity goes up (if that is remotely possible), then wouldn't the value of the solar power system increase as well? In reality, we are not selling something that costs — we are actually offering a financial investment that grows comparably with other forms of energy.
In short, we need to market solar as an investment that will save money while you own it and return most or all of your investment when you sell the building it's sitting on. In commercial real estate, they use a "Cash Flow Analysis" form as the tool to evaluate a building's value using the income approach. We need a similar tool for putting a value on solar. If solar makes sense with this approach, then just think of how much better the systems look when you add the tax advantages!
This approach also applies to the cost of Energy efficiency implementation.
Reducing operational costs increases the value of the business and or property.
Compiled by YJ Draiman, Energy analyst

Cooling Your Home Naturally


Cooling Your Home Naturally
The Consumer Information Center

Keeping cool indoors when it is hot outdoors is a problem.| The sun beating down on our homes causes indoor temperatures to rise to uncomfortable levels. Air conditioning provides some relief. But the initial costs of installing an air conditioner and the electricity costs to run it can be high. In addition, conventional air conditioners use refrigerants made of chlorine compounds, suspected contributors to the depletion of the ozone layer and global warming. But there are alternatives to air conditioning. This publication provides some common sense suggestions and low-cost retrofit options to help you "keep your cool"- and save electricity.

Staying Cool

An alternative way to maintain a cool house or reduce air-conditioning use is natural (or passive) cooling. Passive cooling uses non-mechanical methods to maintain a comfortable indoor temperature.
The most effective method to cool your home is to keep the heat from building up in the first place. The primary source of heat buildup (i.e., gain) is sunlight absorbed by your house through the roof, walls, and windows. Secondary sources are heat-generating appliances in the home and air leakage. Specific methods to prevent heat gain include reflecting heat (i.e., sunlight) away from your house, blocking the heat, removing built-up heat, and reducing or eliminating heat- generating sources in your home.

Reflecting Heat Away
Dull, dark-colored home exteriors absorb 70% to 90% of the radiant energy form the sun that strikes the home's surfaces. Some of this absorbed energy is then transferred into your home by way of conduction, resulting in heat gain. In contrast, light-colored surfaces effectively reflect most of the heat away from your home.

The most effective method to cool your home is to keep the heat from building up in the first place.
Installing a radiant barrier
Radiant barriers are easy to install. It does not matter which way the shiny surface faces - up or down. But you must install it on the underside of your roof - not horizontally over the ceiling. and the barrier must face an airspace.

For your own comfort while in the attic, install the radiant barrier on a cool, cloudy day. Use plywood walk boards or wooden planks over the ceiling joists for support. Caution: Do not step between the ceiling joists, or you may fall through the ceiling.

Staple the foil to the bottom or side of the rafters, draping it from rafter to rafter. Do not worry about a tight fit or small tears in the fabric; radiant transfer is not affected by air movement. The staples should be no more than 2 to 3 inches (5 to 8 centimeters) apart to prevent air circulation from loosening or detaching the radiant barrier. Use a caulking gun to apply a thin bead of construction adhesive to the rafters along the seams of the foil barrier. This will make the installation permanent.
Roofs

About a third of the unwanted heat that builds up in your home comes in through the roof. This is hard to control with traditional roofing materials. For example, unlike most light colored surfaces, even white asphalt and fiberglass shingles absorb 70% of the solar radiation. One good solution is to apply a reflective coating to your existing roof. Two standard roofing coatings are available at your local hardware store or lumberyard. They have both waterproof and reflective properties and are marketed primarily for mobile homes and recreational vehicles. One coating is white latex that you can apply over many common roofing materials, such as asphalt and fiberglass shingles, tar paper, and metal. most manufacturers offer a 5-year warranty.

A second coating is asphalt based and contains glass fibers and aluminum particles. You can apply it to most metal and asphalt roofs. Because it has a tacky surface, it attracts dust, which reduces its reflective somewhat. Another way to reflect heat is to install a radiant barrier on the underside of your roof. A radiant barrier is simply a sheet of aluminum foil with a paper backing. When installed correctly, a radiant barrier can reduce heat gains through your ceiling by about 25%. (see box for information on installing a radiant barrier.)

Radiant-barrier materials cost between $0.13 per square foot ($1.44 per square meter) for a single-layer product with a kraft-paper backing and $0.30 per square foot ($3.33 per square meter) for a vented multiflora product with a fiber- reinforced backing. The latter product doubles as insulation.
Walls

Wall color is not as important as roof color, but does affect heat gain somewhat. white exterior walls absorb less heat than dark walls. and light, bright walls increase the longevity of siding, particularly on the east, west, and south sides of the house.

Windows

Roughly 40% of the unwanted heat that builds up in your home comes in through windows. Reflective window coatings are one way to reflect heat away from your home. These coatings are plastic sheets treated with dyes or thin layers of mental. Besides keeping your house cooler, these reflective coatings cut glare and reduce fading of furniture, draperies, and carpeting.

Two main types of coatings include sun-control films and combination films. Sun-control films are best for warmer climates because they can reflect as much as 80% of the incoming sunlight. Many of these films are tinted, however, and tend to reduce light transmission as much as they reduce heat, thereby darkening the room.

Combination films allow some light into a room but they also let some heat in and prevent interior heat from escaping. These films are best for climates that have both hot and cold seasons. Investigate the different film options carefully to select the film that best meets your needs. Note: do not place reflective coatings on south-facing windows if you want to take advantage of heat gain during the winter. The coatings are applied to the interior surface of the window. Although you can apply the films yourself, it is a good idea to have a professional install the coatings, particularly if you have several large windows. This will ensure a more durable installation and a more aesthetically pleasing look.

Landscaping is a natural and beautiful way to shade your home and block the sun.
Blocking the Heat
Two excellent methods to block heat are insulation and shading. Insulation helps keep your home comfortable and saves money on mechanical cooling systems such as air conditioners and electric fans. Shading devices block the sun's rays and absorb or reflect the solar heat.

Insulation

Weatherization measures - such as insulating, weather stripping, and caulking - help seal and protect your house against the summer heat in addition to keeping out the winter cold. For more information on weatherizing your home, see the energy efficiency and renewable energy clearinghouse (EREC) fact sheet caulking and weather stripping and the U.S. Department of Energy (DOE) fact sheet insulation. The attic is a good place to start insulating because it is a major source of heat gain. Adequately insulating the attic protects the upper floors of a house. Recommended attic insulation levels depend on where you live and the type of heating system you use. for most climates, you want a minimum of R-30. In climates with extremely cold winters, you may want as much as R-49. again, check the DOE fact sheet insulation on how to determine the ideal level of insulation for your climate.

Wall insulation is not as important for cooling as attic insulation because outdoor temperatures are not as hot as attic temperatures. also, floor insulation has little or no effect on cooling.

Although unintentional infiltration of out-side air is not a major contributor to inside temperature, it is still a good idea to keep it out. Outside air can infiltrate your home around poorly sealed doors, windows, electrical outlets, and through openings in foundations and exterior walls. Thorough caulking and weather stripping will control most of these air leaks.
Shading
Shading your home can reduce indoor temperatures by as much as 20øf (11øc). effective shading can be provided by trees and other vegetation and exterior or interior shades.

Landscaping

Landscaping is a natural and beautiful way to shade your home and block the sun. A well-placed tree, bush, or vine can deliver effective shade and add to the aesthetic value of your property. When designing your landscaping, use plants native to your area that survive with minimal care. Trees that lose their leaves in the fall (i.e., deciduous) help cut cooling energy costs the most. when selectively placed around a house, they provide excellent protection from the summer sun and permit winter sunlight to reach and warm your house. The height, growth rate, branch spread, and shape are all factors to consider in choosing a tree. Vines are a quick way to provide shading and cooling. grown on trellises, vines can shade windows or the whole side of a house. Ask your local nursery which vine is best suited to your climate and needs.

Besides providing shade, trees and vines create a cool microclimate that dramatically reduces the temperature (by as much as (9øf []5øc]) in the surrounding area. During photosynthesis, large amounts of water vapor escape through the leaves, cooling the passing air. and the generally dark and coarse leaves absorb solar radiation. You might also consider low ground cover such as grass, small plants, and bushes. a grass-covered lawn is usually 10øf (6øc) cooler than bare ground in the summer. If you are in an arid or semiarid climate, consider native ground covers that require little water. For more information on landscaping, see the erec fact sheet landscaping for energy efficiency.
Planning Your Planting

Placement of vegetation is important when landscaping your home. The following are suggestions to help you gain the most from vegetation.

  • Plant trees on the northeast-southeast and the northwest-southwest sides of your house. Unless you live in a climate where it is hot year-round, do not plant trees directly to the south. Even the bare branches of mature deciduous trees can significantly reduce the amount of sun reaching your house in the winter.
  • Plant trees and shrubs so they can direct breezes. Do not place a dense line of evergreen trees where they will block the flow of cool air around or through them.
  • Set trellises away from your house to allow air to circulate and keep the vines from attaching to your house's facade and damaging its exterior. Placing vegetation too close to your house can trap heat and make the air around your house even warmer.
  • Do not plant trees or large bushes where their roots can damage septic tanks, sewer lines, underground wires, or your house's foundation.
  • Make sure the plants you choose can withstand local weather extremes.

Shading Devices

Both exterior and interior shades control heat gain. Exterior shades are generally more effective than interior shades because they block sunlight before it enters windows. When deciding which devices to use and where to use them, consider whether you are willing to open and close them daily or just put them up for the hottest season. You also want to know how they will affect ventilation.

  • Exterior shading devices include awnings, lovers, shutters, rolling shutters and shades, and solar screens. Awnings are very effective because the block direct sunlight. They are usually made of fabric or metal and are attached above the window and extend down and out. A properly installed awning can reduce heat gain up to 65% on southern windows and 77% on eastern windows. A light-colored awning does double duty by also reflecting sunlight.
  • Maintaining a gap between the top of the awning and the side of the house helps vent accumulated heat from under a solid- surface awning. If you live in a climate with cold winters, you will want to remove awnings for winter storage, or by retractable ones, to take advantage of winter heat gain.
  • A properly sized awning is an effective exterior shading device.
  • Roughly 40% of the unwanted heat that builds up in your home comes in through windows.
  • The amount of drop (how far down the awing comes) depends on which side of your house the window is on. An east or west window needs a drop of 65% to 75% of the window height. A south-facing window only needs a drop of 45% to 60% for the same amount of shade. A pleasing angle to the eye for mounting and awning is 45ø. Make sure the awning does not project into the path of foot traffic unless it is at least 6 feet 8 inches (2 meters) from the ground.
  • One disadvantage of awnings is that they can block views, particularly on the east and west sides. However, slatted awnings do allow limited viewing through the top parts of windows.
  • Louvers are attractive because their adjustable slats control the level of sunlight slats control the level of sunlight entering your home and, depending on the design, can be adjusted from inside or outside your house. The slats can be vertical or horizontal. Louvers remain fixed and are attached to the exteriors of window frames.
  • Shutters are movable wooden or metal covering that, when closed, keep sunlight out. Shutters are either solid or slatted with fixed or adjustable slats. Besides reducing heat gain, they can provide privacy and security. Some shutters help insulate windows when it is cold outside.
  • Rolling shutters have a series of horizontal slats that run down along a track. Rolling shades use a fabric. these are the most expensive shading options, but the work well and can provide security. many exterior rolling shutters or shades can be conveniently controlled from the inside. One disadvantage is that when fully extended, the block all light.
  • Solar screens resemble standard window screens except they keep direct sunlight from entering the window, cut glare, and block light without blocking the view or elimination air flow. They also provide privacy by restricting the view of the interior from outside your house. Solar screens come in a variety of colors and screening materials to compliment any home. Although do-it-yourself kits are available, these screens will not last as long as professionally built screens.
  • Although interior shading is not as effective as exterior shading, it is worthwhile if none of the previously mentioned techniques are possible. There are several ways to block the sun's heat from inside your house.
  • Draperies and curtains made of tightly woven, light-colored, opaque fabrics reflect more of the sun's rays than they let through. The tighter the curtain is against the wall around the window, the better it will prevent heat gain. Two layers of draperies improve the effectiveness of the draperies' insulation when it is either hot or cold outside.
  • Venetian blinds, although not as effective as draperies, can be adjusted to let in some light and air while reflecting the sun's heat. Some newer blinds are coated with reflective finishes. To be effective, the reflective surfaces must face the outdoors. Some interior cellular (honeycombed) shades also come with reflective mylar coatings. But they block natural light and restrict air flow.
  • Opaque roller shades are effective when fully drawn but also block light and restrict air flow.
  • Ventilated attics are about 30of (16oc) cooler than unventilated attics

Removing Built-Up Heat

Nothing feels better on a hot day than a cool breeze. Encouraging cool air to enter your house forces warm air out, keeping your house comfortably cool. However, this strategy only works when the inside temperature is higher than the outside temperature.

Natural ventilation maintains indoor temperatures close to outdoor temperatures close to outdoor temperatures and helps remove heat from your home. But only ventilated during the coolest parts of the day or night, and seal off your house from the hot sun and air during the hottest parts of the day. The climate you live in determines the best ventilation strategy. In areas with cool nights and very hot days, let the night air in to cool your house. A well-insulated house will gain only 1of (0.6øc). By the time the interior heats up, and the outside air should be cooler and can be allowed indoors.

In climates with day time breezes, open windows on the side from where the breeze is coming and on the opposite side of the house. Keep interior doors open to encourage whole house ventilation. If your location lacks consistent breezes, create them by opening the windows at the lowest and highest points in your house. This natural "thermosiphoning," or "chimney," effect can be taken a step further by adding a clerestory or a vented skylight.

In hot, humid climates where temperature swings between day and night are mall, ventilate when humidity is not excessive. Ventilating your attic greatly reduces the amount of accumulated heat, which eventually works its way into the main part of your house. Ventilated attics are about 30øf (16øc) cooler than unventilated attics. Properly sized and placed louvers and roof vents help prevent moisture buildup and overheating in your attic. For more information on ventilation, see the erec fact sheet fans and ventilation.

Reducing Heat-Generating Sources
Often-overlooked sources of interior heat gain are lights and household appliances, such as ovens, dishwashers, and dryers. Because most of the energy that incandescent lamps use is given off as heat, use them only when necessary. Take advantage of daylight to illuminate your house. and consider switching to compact fluorescent lamps. These use about 75% less energy than incandescent lamps, and emit 90% less heat for the same amount of light. For more information on lighting, see the erec fact sheet energy-efficient lighting.

New, energy efficient appliances generate less heat and use less energy.

Many household appliances generate a lot of heat. When possible, use them in the morning or late evening when you can better tolerate the extra heat. Consider cooking on an outside barbecue grill or use a microwave oven, which does not generate as much heat and uses less energy than a gas or electric range.

Washers, dryers, dishwashers, and water heaters also generate large amounts of heat and humidity. To gain the most benefit, seal off your laundry room and water heater from the rest of the house.

New, energy efficient appliances generate less heat and use less energy. When it is time to purchase new appliances, make sure the are energy efficient. All refrigerators, dishwashers, and dryers display an energy guide label indicating the annual estimated cost for operating the appliance or a standardized energy efficiency ratio. Compare appliances and buy the most efficient models for your needs. For more information, see the erec fact sheet a guide to making energy-smart purchases.

Saving Energy

Using any or all of these strategies will help keep you cool. even if you use air conditioning, many of these strategies, may not be enough. sometimes you need to supplement natural cooling with mechanical devices. fans and evaporative coolers can supplement your cooling strategies and cost less to install and run than air conditioners.

Ceiling fans make you feel cooler. their effect is equivalent to lowering the air temperature by about 4øf (2øc). Evaporative coolers use about one-fourth the energy of conventional air conditioners.

Many utility companies offer rebates and other cost incentives when you purchase or install energy saving products, such as insulation and energy efficient lighting and appliances. Contact your local utility company to see what it offers in the way of incentives.

    Cooling Strategies to Consider
  • lighten roof and exterior wall color
  • replace/coat roof with bright white or shiny material
  • install a radiant barrier
  • add reflective coatings to windows
  • insulate attic and walls
  • caulk and weather-strip to seal air leaks
  • add shade trees, bushes, or vines
  • add exterior awnings and shades
  • add interior drapes and shades
  • ventilate attic
  • increase natural ventilation
  • isolate heat-generating appliances
  • replace heat-generating appliances
  • replace light bulbs with energy-efficient fluorescents

How to Plan Attic Ventilation

 

How to Plan Attic Ventilation

Attic ventilation is essential in controlling the heat that gets trapped in the roof of your home. If your attic is not ventilated or not properly ventilated, you risk having higher energy bills and doing damage to your roof in the hot summer months. Planning and installing attic ventilation will help to reduce the amount of air and moisture that gets trapped in your roof. Consider the information below to plan your attic ventilation.

Determining the Vent Type

There are different types of vents that you can install in your attic that will help remove hot air and moisture. The first thing in planning your attic ventilation is determining which type of vent is most suitable for your attic. There are many homes that have  been built with gable styled vents that are not as effective as soffit styled vents that are available today. 

Conduct thorough research online for the different types of vents for your home. Be sure to evaluate the cost and benefit of ventilation systems like turbine systems and power generated systems. A turbine vent, for example, is effective at removing trapped air in your roof but does not operate if there is no wind to spin the turbine. A power generated venting system is effective, however, has the potential to consume the money you save by using energy to operate. Builders agree unanimously that a ridge type venting system is the most effective and cost effective type of attic ventilation.

Roof Draw Diagram

It is best practice to measure the dimensions of your attic and draw a diagram that will include the areas you want to install vents. You can easily measure the square footage of your attic by multiplying the length of your home by the width. After determining the type attic ventilation system you will need, knowing where you want to put the vents is the next important step. How many vents you will need for your roof depends on the measurements of the vents themselves.

Survey Installation Areas

Once you have drawn out your plan of where you will install your attic vents, it is important to do a survey of the area to ensure your plans on paper will work out physically. Climb to the roof of your home and mark the areas on your roof in accordance to your diagram. If you already have the vents, place them in the areas of your markings for a dry fit. Ensure that the vents are evenly spaced on the roof.

Plan Installation

Depending upon how many vents you will be installing, you will be spending a considerable amount of time on your roof cutting and installing your vents. Ensure that you choose a day that is dry and that your roof is dry to avoid any accidental slipping. If you live in a warm climate, ensure that you take into consideration all safety precautions such as loose clothing and plenty of liquids to stay hydrated. Getting help from a friend or neighbor is recommended when doing any roof work. 

How to Calculate Proper Attic Ventilation

Proper attic ventilation lets air circulate through your attic. The air circulation deters the buildup of excessive heat and moisture. You can achieve attic ventilation in several ways. Fans, vents, skylights and windows that open can all help ventilation. The method you choose may depend on how you use your attic space.

Calculating Attic Ventilation Needs

As a general rule, every 150 square feet of attic space requires 1 square foot of ventilation. Windows do not always remain open, so fans and vents are your best bet. You might consider ridge vents, box and dome vents, gable fans and vents, or soffit vents.
Using the above calculations, we find that an area that is 600 square feet should have 4 square feet of operable attic ventilation. To fill this ventilation requirement, you could use four box vents (1 square foot each) or one long, narrow ridge vent (4 total square feet).

Improper Attic Ventilation

Without proper air circulation, moisture can build up in your attic. The moisture may lead to rotting drywall and insulation. In addition, since heat rises, air needs to flow in and out of the attic to draw out the heat as much as possible.
To avoid potential problems, measure the square footage as described above and choose a method of attic ventilation that can fulfill your needs.

How to Install an Attic Ventilation Fan


An attic ventilation fan is an electrically powered ventilation device that helps keep the attic free from moisture and heated air. The installation of the fan is an easy do-it-yourself project for people who are not afraid to cut holes on the walls or on the roof itself. An attic ventilation fan also helps increase the energy-efficiency of a home especially during summer when the heat can rise to unprecedented temperatures. Here is how to install an attic ventilation fan.

Tools and Materials

  • Drill
  • Saber Saw, Circular Saw
  • Screwdrivers
  • Switch
  • Utility Knife
  • Shutters or Ventilation Cap

Step 1 – Choosing the Best Fan

Attics that are relatively huge require a more powerful fan. Determine how powerful the fan should be before purchasing. Ask around for information regarding attic fans and choose one that best fits the requirements and the budget as well. There are attic ventilation fans that are installed right onto the roof, while some are installed at the gables.

Step 2 – Determine the Location of the Fan

Attic ventilation should be as close to the peak of the roof as much as possible to ensure that hot air escapes the interior of the attic. Mark the location where the fan will be installed. Drill a hole through the roof and shingles and stick a wire inside it to be able to locate the hole from the outside.

Step 3 – Cut Holes

Get outside and on top of the roof to locate the drilled hole. Use the template that comes with the fan and use it as a guide when cutting the rest of the roofing material. Use a saber saw or a circular saw for this task. If there are any shingles on the roof, use a utility knife to remove it from the surface of the roof before cutting a hole for the fan. If the fan is to be installed on the gables, simply trace the hole using the fan template and cut through it using a circular saw.

Step 4 – Mount the Fan

Before connecting the wires, make sure to secure the fan to the roof or the gables first. Locate the screw holes on the fan and fit the fan onto the roof or gable. Mark the screw holes on the wall or roof and pre-drill them. Afterwards, screw the entire fan onto the roof or wall. Make sure that the all screws are tight enough.

Step 5 – Connect the Wiring

Turn off the power supply and install the switch of the fan. Connect the wiring from the fan to the switch and from the switch to the power supply. The instructions for the wire connections are usually included in the manufacturer’s instructions on the product manual.

Step 6 – Install the Shutter or Ventilation Fan Cap

After mounting the fan onto the gable or the roof, install the shutter outside the gable or the ventilation fan cap outside of the roof. Every cap will install differently depending on the manufacturer’s instructions. Turn on the power supply and test the attic ventilation fan.

Tips for Preventing Attic Ventilation Problems

Anyone who has suffered mold in their home will understand the importance of effective attic ventilation. Poor ventilation can result in condensation and this can eventually lead to problems with mold and mildew. While ventilation can be effective, it is possible to create further problems if certain aspects are overlooked.

Air Bricks

Despite them being beneficial in allowing a property to breathe, it is easy to take air bricks for granted. In the event that they have suffered damage or have been blocked by plant life or infested with insects, the ability that they have to provide attic ventilation can be greatly reduced. Prevent this problem from occurring by checking them regularly and cleaning them when required, this will usually involve nothing more that running pipe cleaners through the holes. Where they have broken, it is prudent to get them replaced as they are near impossible to repair effectively.

Insulation

As useful as insulation can be in reducing your heating bills, it can also affect the method of attic ventilation if it is not used properly. Whether you are using a blanket or loose insulation material in your attic, take care not to cover any apertures that allow air to circulate in the space. Similarly, moisture barriers should only be used in relevant sections of the attic so that it doesn’t obstruct any ventilation.

Windows

Skylights and windows can provide an effective method of attic ventilation, but they can often go neglected for a variety of reasons. If frames have been painted shut, undertake the work required to bring the opening back into operation. If safety is an issue, consider fitting a lever that will only allow for it to be opened a certain distance so that air can still circulate without allowing passage for anyone to get in or out. If a window is able to fully open, it can be sufficient to provide a significant level of ventilation even if left open for a short period. Make a point of adding it to the routine of locking up your home at night.

Vents

Check any vents that have been fitted to provide attic ventilation. In the event that they have suffered damage, they could allow access for insects, birds and other small animals to set up home and cause a blockage. Clean the vents on a regular basis and undertake repairs as and when required. If vents are at floor level within the attic rather than higher up the wall, make sure that they are not covered by any insulation fitted in the attic.

Extractor Fan

An extractor fan is a good way to create ventilation in your attic. Varieties that comprise a sensor are available on the market so that it automatically switches on when the temperature reaches a certain level. You can experiment to determine what temperature is appropriate for the fan to begin working at and adjust it accordingly. These fans are usually powered by connection to the electricity supply. However, it is still work checking it on a regular basis to ensure that the connections and components have not developed a fault.

How to Build a Geothermal Cooling System

 

How to Build a Geothermal Cooling System

A geothermal cooling system uses the temperature of the earth to cool homes. The temperature below the surface of the ground fluctuates less and is better regulated by not being exposed to the wind and the sun. A home can use the ground's temperature to cool its own by constructing such a system.

Geothermal cooling systems can be complex or very simple. Some use pumps, heat exchangers, and air ducts. Others simply use a couple of fans to create a cool air passage. This is an inexpensive alternative to cooling your home.

Tools and Materials Needed:
  • Two fans
  • Moisture meter
  • Dehumidifier (optional)
  • Thermometer
Step 1: Use the Home's Basement
As the source of the system will be the earth, you will need have access to it within the home. This means the home will need to have a portion residing below ground (i.e., a basement).

Step 2: Reduce Humidity

Reduce the relative humidity in your basement by using a dehumidifier. This may not be necessary if your basement is dry. Run the dehumidifier until the relative humidity has dropped below 60 percent. Use a moisture meter to check the humidity level.

Step 3: Preparing Air Flow

To create a way for the air to flow up from the basement to the areas you want cooled, we need to create an air stream. If you have a basement window, it make this process easier. Open a basement window, if available. Close all the windows on the upper floors. Close the doors to any rooms you don't need to cool. This will divert the cool air to the areas where it's needed most. Now find the highest window in the upper floor. Open this window. Since hot air rises, this is where the heat will escape from the house.

Step 4: Run the Fans

Now it's time to run fans. You can use portable fans or install permanent ones. The fans will create the stream of air entering and exiting your home, thereby channeling cool air from the basement upward. Turn on a fan in the basement, with the air flow pointed toward the upstairs. Now go to the highest window on the upper floor you opened. Place a fan in the window with the air flow projecting outside the house. This will suck the air blowing up from the basement and discharge the warm air out of the house.

Step 5: Watch the Time

At some point during the day, the basement may begin to warm up. This is because heat from the sun is warming the earth. If you have a deep basement, you will experience this less. Watch the temperature of your basement. If it begins reaching a temperature near the upper floor, you may have realized your cooling potential. Running your fans after this point may only push warm air into the upper floors instead of cool air.
With this simple system, you should be able to reduce the temperature of your home by several degrees. It will also save you money by not running the air conditioner.

Indoor Air Quality Concerns

 

Indoor Air Quality Concerns

All of us face a variety of risks to our health as we go about our day-to-day lives. Driving in cars, flying in planes, engaging in recreational activities, and being exposed to environmental pollutants all pose varying degrees of risk. Some risks are simply unavoidable. Some we choose to accept because to do otherwise would restrict our ability to lead our lives the way we want. And some are risks we might decide to avoid if we had the opportunity to make informed choices. Indoor air pollution is one risk that you can do something about.
In the last several years, a growing body of scientific evidence has indicated that the air within homes and other buildings can be more seriously polluted than the outdoor air in even the largest and most industrialized cities. Other research indicates that people spend approximately 90 percent of their time indoors. Thus, for many people, the risks to health may be greater due to exposure to air pollution indoors than outdoors.
In addition, people who may be exposed to indoor air pollutants for the longest periods of time are often those most susceptible to the effects of indoor air pollution. Such groups include the young, the elderly, and the chronically ill, especially those suffering from respiratory or cardiovascular disease.

Why a Booklet on Indoor Air?

While pollutant levels from individual sources may not pose a significant health risk by themselves, most homes have more than one source that contributes to indoor air pollution. There can be a serious risk from the cumulative effects of these sources. Fortunately, there are steps that most people can take both to reduce the risk from existing sources and to prevent new problems from occurring. This booklet was prepared by the U.S. Environmental Protection Agency (EPA) and the U.S. Consumer Product Safety Commission (CPSC) to help you decide whether to take actions that can reduce the level of indoor air pollution in your own home.
Because so many Americans spend a lot of time in offices with mechanical heating, cooling, and ventilation systems, there is also a short section on the causes of poor air quality in offices and what you can do if you suspect that your office may have a problem. A glossary and a list of organizations where you can get additional information are available in this document.

INDOOR AIR QUALITY IN YOUR HOME

What Causes Indoor Air Problems?

Indoor pollution sources that release gases or particles into the air are the primary cause of indoor air quality problems in homes. Inadequate ventilation can increase indoor pollutant levels by not bringing in enough outdoor air to dilute emissions from indoor sources and by not carrying indoor air pollutants out of the home. High temperature and humidity levels can also increase concentrations of some pollutants.
Pollutant Sources
There are many sources of indoor air pollution in any home. These include combustion sources such as oil, gas, kerosene, coal, wood, and tobacco products; building materials and furnishings as diverse as deteriorated, asbestos-containing insulation, wet or damp carpet, and cabinetry or furniture made of certain pressed wood products; products for household cleaning and maintenance, personal care, or hobbies; central heating and cooling systems and humidification devices; and outdoor sources such as radon, pesticides, and outdoor air pollution.
The relative importance of any single source depends on how much of a given pollutant it emits and how hazardous those emissions are. In some cases, factors such as how old the source is and whether it is properly maintained are significant. For example, an improperly adjusted gas stove can emit significantly more carbon monoxide than one that is properly adjusted.
Some sources, such as building materials, furnishings, and household products like air fresheners, release pollutants more or less continuously. Other sources, related to activities carried out in the home, release pollutants intermittently. These include smoking, the use of unvented or malfunction-ing stoves, furnaces, or space heaters, the use of solvents in cleaning and hobby activities, the use of paint strippers in redecorating activities, and the use of cleaning products and pesticides in housekeeping. High pollutant concentrations can remain in the air for long periods after some of these activities.
Amount of Ventilation
If too little outdoor air enters a home, pollutants can accumulate to levels that can pose health and comfort problems. Unless they are built with special mechanical means of ventilation, homes that are designed and constructed to minimize the amount of outdoor air that can "leak" into and out of the home may have higher pollutant levels than other homes. However, because some weather conditions can drastically reduce the amount of outdoor air that enters a home, pollutants can build up even in homes that are normally considered "leaky."

How Does Outdoor Air Enter a House?

Outdoor air enters and leaves a house by: infiltration, natural ventilation, and mechanical ventilation. In a process known as infiltration, outdoor air flows into the house through openings, joints, and cracks in walls, floors, and ceilings, and around windows and doors. In natural ventilation, air moves through opened windows and doors. Air movement associated with infiltration and natural ventilation is caused by air temperature differences between indoors and outdoors and by wind. Finally, there are a number of mechanical ventilation devices, from outdoor-vented fans that intermittently remove air from a single room, such as bathrooms and kitchen, to air handling systems that use fans and duct work to continuously remove indoor air and distribute filtered and conditioned outdoor air to strategic points throughout the house. The rate at which outdoor air replaces indoor air is described as the air exchange rate. When there is little infiltration, natural ventilation, or mechanical ventilation, the air exchange rate is low and pollutant levels can increase.

What If You Live in an Apartment?

Apartments can have the same indoor air problems as single-family homes because many of the pollution sources, such as the interior building materials, furnishings, and household products, are similar. Indoor air problems similar to those in offices are caused by such sources as contaminated ventilation systems, improperly placed outdoor air intakes, or maintenance activities.
Solutions to air quality problems in apartments, as in homes and offices, involve such actions as: eliminating or controlling the sources of pollution, increasing ventilation, and installing air cleaning devices. Often a resident can take the appropriate action to improve the indoor air quality by removing a source, altering an activity, unblocking an air supply vent, or opening a window to temporarily increase the ventilation; in other cases, however, only the building owner or manager is in a position to remedy the problem.

IMPROVING THE AIR QUALITY IN YOUR HOME

Indoor Air and Your Health

Health effects from indoor air pollutants may be experienced soon after exposure or, possibly, years later.
Immediate effects may show up after a single exposure or repeated exposures. These include irritation of the eyes, nose, and throat, headaches, dizziness, and fatigue. Such immediate effects are usually short-term and treatable. Sometimes the treatment is simply eliminating the person's exposure to the source of the pollution, if it can be identified. Symptoms of some diseases, including asthma, hypersensitivity pneumonitis, and humidifier fever, may also show up soon after exposure to some indoor air pollutants.
The likelihood of immediate reactions to indoor air pollutants depends on several factors. Age and preexisting medical conditions are two important influences. In other cases, whether a person reacts to a pollutant depends on individual sensitivity, which varies tremendously from person to person. Some people can become sensitized to biological pollutants after repeated exposures, and it appears that some people can become sensitized to chemical pollutants as well.
Certain immediate effects are similar to those from colds or other viral diseases, so it is often difficult to determine if the symptoms are a result of exposure to indoor air pollution. For this reason, it is important to pay attention to the time and place the symptoms occur. If the symptoms fade or go away when a person is away from the home and return when the person returns, an effort should be made to identify indoor air sources that may be possible causes. Some effects may be made worse by an inadequate supply of outdoor air or from the heating, cooling, or humidity conditions prevalent in the home.
Other health effects may show up either years after exposure has occurred or only after long or repeated periods of exposure. These effects, which include some respiratory diseases, heart disease, and cancer, can be severely debilitating or fatal. It is prudent to try to improve the indoor air quality in your home even if symptoms are not noticeable. More information on potential health effects from particular indoor air pollutants is provided in the section, "A Look at Source-Specific Controls."
While pollutants commonly found in indoor air are responsible for many harmful effects, there is considerable uncertainty about what concentrations or periods of exposure are necessary to produce specific health problems. People also react very differently to exposure to indoor air pollutants. Further research is needed to better understand which health effects occur after exposure to the average pollutant concentrations found in homes and which occur from the higher concentrations that occur for short periods of time.
The health effects associated with some indoor air pollutants are summarized in the section "Reference Guide to Major Indoor Air Pollutants in the Home."

Identifying Air Quality Problems

Some health effects can be useful indicators of an indoor air quality problem, especially if they appear after a person moves to a new residence, remodels or refurnishes a home, or treats a home with pesticides. If you think that you have symptoms that may be related to your home environment, discuss them with your doctor or your local health department to see if they could be caused by indoor air pollution. You may also want to consult a board-certified allergist or an occupational medicine specialist for answers to your questions.
Another way to judge whether your home has or could develop indoor air problems is to identify potential sources of indoor air pollution. Although the presence of such sources does not necessarily mean that you have an indoor air quality problem, being aware of the type and number of potential sources is an important step toward assessing the air quality in your home.
A third way to decide whether your home may have poor indoor air quality is to look at your lifestyle and activities. Human activities can be significant sources of indoor air pollution. Finally, look for signs of problems with the ventilation in your home. Signs that can indicate your home may not have enough ventilation include moisture condensation on windows or walls, smelly or stuffy air, dirty central heating and air cooling equipment, and areas where books, shoes, or other items become moldy. To detect odors in your home, step outside for a few minutes, and then upon reentering your home, note whether odors are noticeable.

Measuring Pollutant Levels

The federal government recommends that you measure the level of radon in your home. Without measurements there is no way to tell whether radon is present because it is a colorless, odorless, radioactive gas. Inexpensive devices are available for measuring radon. EPA provides guidance as to risks associated with different levels of exposure and when the public should consider corrective action. There are specific mitigation techniques that have proven effective in reducing levels of radon in the home. (See "Radon" for additional information about testing and controlling radon in homes.)
For pollutants other than radon, measurements are most appropriate when there are either health symptoms or signs of poor ventilation and specific sources or pollutants have been identified as possible causes of indoor air quality problems. Testing for many pollutants can be expensive. Before monitoring your home for pollutants besides radon, consult your state or local health department or professionals who have experience in solving indoor air quality problems in nonindustrial buildings.

Weatherizing Your Home

The federal government recommends that homes be weatherized in order to reduce the amount of energy needed for heating and cooling. While weatherization is underway, however, steps should also be taken to minimize pollution from sources inside the home. (See "Improving the Air Quality in Your Home" for recommended actions.) In addition, residents should be alert to the emergence of signs of inadequate ventilation, such as stuffy air, moisture condensation on cold surfaces, or mold and mildew growth. Additional weatherization measures should not be undertaken until these problems have been corrected.
Weatherization generally does not cause indoor air problems by adding new pollutants to the air. (There are a few exceptions, such as caulking, that can sometimes emit pollutants.) However, measures such as installing storm windows, weather stripping, caulking, and blown-in wall insulation can reduce the amount of outdoor air infiltrating into a home. Consequently, after weatherization, concentrations of indoor air pollutants from sources inside the home can increase.

Three Basic Strategies

Source Control
Usually the most effective way to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed; others, like gas stoves, can be adjusted to decrease the amount of emissions. In many cases, source control is also a more cost-efficient approach to protecting indoor air quality than increasing ventilation because increasing ventilation can increase energy costs. Specific sources of indoor air pollution in your home are listed later in this section.
Ventilation Improvements
Another approach to lowering the concentrations of indoor air pollutants in your home is to increase the amount of outdoor air coming indoors. Most home heating and cooling systems, including forced air heating systems, do not mechanically bring fresh air into the house. Opening windows and doors, operating window or attic fans, when the weather permits, or running a window air conditioner with the vent control open increases the outdoor ventilation rate. Local bathroom or kitchen fans that exhaust outdoors remove contaminants directly from the room where the fan is located and also increase the outdoor air ventilation rate.
It is particularly important to take as many of these steps as possible while you are involved in short-term activities that can generate high levels of pollutants--for example, painting, paint stripping, heating with kerosene heaters, cooking, or engaging in maintenance and hobby activities such as welding, soldering, or sanding. You might also choose to do some of these activities outdoors, if you can and if weather permits.
Advanced designs of new homes are starting to feature mechanical systems that bring outdoor air into the home. Some of these designs include energy-efficient heat recovery ventilators (also known as air-to-air heat exchangers). For more information about air-to-air heat exchangers, contact the Conservation and Renewable Energy Inquiry and Referral Service (CAREIRS), PO Box 3048, Merrifield, VA 22116; (800) 523-2929

Air Cleaners
There are many types and sizes of air cleaners on the market, ranging from relatively inexpensive table-top models to sophisticated and expensive whole-house systems. Some air cleaners are highly effective at particle removal, while others, including most table-top models, are much less so. Air cleaners are generally not designed to remove gaseous pollutants.
The effectiveness of an air cleaner depends on how well it collects pollutants from indoor air (expressed as a percentage efficiency rate) and how much air it draws through the cleaning or filtering element (expressed in cubic feet per minute). A very efficient collector with a low air-circulation rate will not be effective, nor will a cleaner with a high air-circulation rate but a less efficient collector. The long-term performance of any air cleaner depends on maintaining it according to the manufacturer's directions.
Another important factor in determining the effectiveness of an air cleaner is the strength of the pollutant source. Table-top air cleaners, in particular, may not remove satisfactory amounts of pollutants from strong nearby sources. People with a sensitivity to particular sources may find that air cleaners are helpful only in conjunction with concerted efforts to remove the source.
Over the past few years, there has been some publicity suggesting that houseplants have been shown to reduce levels of some chemicals in laboratory experiments. There is currently no evidence, however, that a reasonable number of houseplants remove significant quantities of pollutants in homes and offices. Indoor houseplants should not be over-watered because overly damp soil may promote the growth of microorganisms which can affect allergic individuals.
At present, EPA does not recommend using air cleaners to reduce levels of radon and its decay products. The effectiveness of these devices is uncertain because they only partially remove the radon decay products and do not diminish the amount of radon entering the home. EPA plans to do additional research on whether air cleaners are, or could become, a reliable means of reducing the health risk from radon. EPA's booklet, Residential Air-Cleaning Devices, provides further information on air-cleaning devices to reduce indoor air pollutants.
For most indoor air quality problems in the home, source control is the most effective solution. This section takes a source-by-source look at the most common indoor air pollutants, their potential health effects, and ways to reduce levels in the home. (For a summary of the points made in this section, see the section entitled "Reference Guide to Major Indoor Air Pollutants in the Home.") EPA has recently released, Ozone Generators That Are Sold As Air Cleaners. The purpose of this document (which is only available via this web site) is to provide accurate information regarding the use of ozone-generating devices in indoor occupied spaces. This information is based on the most credible scientific evidence currently available.
EPA has recently published, "Should You Have the Air Ducts in Your Home Cleaned?" EPA-402-K-97-002, October 1997. This document is intended to help consumers answer this often confusing question. The document explains what air duct cleaning is, provides guidance to help consumers decide whether to have the service performed in their home, and provides helpful information for choosing a duct cleaner, determining if duct cleaning was done properly, and how to prevent contamination of air ducts.

A LOOK AT SOURCE-SPECIFIC CONTROLS

RADON (Rn)
The most common source of indoor radon is uranium in the soil or rock on which homes are built. As uranium naturally breaks down, it releases radon gas which is a colorless, odorless, radioactive gas. Radon gas enters homes through dirt floors, cracks in concrete walls and floors, floor drains, and sumps. When radon becomes trapped in buildings and concentrations build up indoors, exposure to radon becomes a concern.
Any home may have a radon problem. This means new and old homes, well-sealed and drafty homes, and homes with or without basements.
Sometimes radon enters the home through well water. In a small number of homes, the building materials can give off radon, too. However, building materials rarely cause radon problems by themselves.
Health Effects of Radon
The predominant health effect associated with exposure to elevated levels of radon is lung cancer. Research suggests that swallowing water with high radon levels may pose risks, too, although these are believed to be much lower than those from breathing air containing radon. Major health organizations (like the Centers for Disease Control and Prevention, the American Lung Association (ALA), and the American Medical Association) agree with estimates that radon causes thousands of preventable lung cancer deaths each year. EPA estimates that radon causes about 14,000 deaths per year in the United States--however, this number could range from 7,000 to 30,000 deaths per year. If you smoke and your home has high radon levels, your risk of lung cancer is especially high.
Reducing Exposure to Radon in Homes
Measure levels of radon in your home.
You can't see radon, but it's not hard to find out if you have a radon problem in your home. Testing is easy and should only take a little of your time.
There are many kinds of inexpensive, do-it-yourself radon test kits you can get through the mail and in hardware stores and other retail outlets. Make sure you buy a test kit that has passed EPA's testing program or is state-certified. These kits will usually display the phrase "Meets EPA Requirements." If you prefer, or if you are buying or selling a home, you can hire a trained contractor to do the testing for you. EPA's voluntary National Radon Proficiency Program (RPP) evaluated testing (measurement) contractors. A contractor who had met EPA's requirements carried an EPA-generated RPP identification card. EPA provided a list of companies and individual contractors on this web site which was also available to state radon offices. You should call your state radon office to obtain a list of qualified contractors in your area.You can also contact either the National Environmental Health Association (NEHA) - http://www.neha.org or the National Radon Safety Board (NRSB) - http://www.nrsb.org for a list of proficient radon measurement and/or mitigation contractors.

Environmental tobacco smoke (ETS) is the mixture of smoke that comes from the burning end of a cigarette, pipe, or cigar, and smoke exhaled by the smoker. It is a complex mixture of over 4,000 compounds, more than 40 of which are known to cause cancer in humans or animals and many of which are strong irritants. ETS is often referred to as "secondhand smoke" and exposure to ETS is often called "passive smoking."
Health Effects of Environmental Tobacco Smoke
In 1992, EPA completed a major assessment of the respiratory health risks of ETS (Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders EPA/600/6-90/006F). The report concludes that exposure to ETS is responsible for approximately 3,000 lung cancer deaths each year in nonsmoking adults and impairs the respiratory health of hundreds of thousands of children.
Infants and young children whose parents smoke in their presence are at increased risk of lower respiratory tract infections (pneumonia and bronchitis) and are more likely to have symptoms of respiratory irritation like cough, excess phlegm, and wheeze. EPA estimates that passive smoking annually causes between 150,000 and 300,000 lower respiratory tract infections in infants and children under 18 months of age, resulting in between 7,500 and 15,000 hospitalizations each year. These children may also have a build-up of fluid in the middle ear, which can lead to ear infections. Older children who have been exposed to secondhand smoke may have slightly reduced lung function.
Asthmatic children are especially at risk. EPA estimates that exposure to secondhand smoke increases the number of episodes and severity of symptoms in hundreds of thousands of asthmatic children, and may cause thousands of nonasth-matic children to develop the disease each year. EPA estimates that between 200,000 and 1,000,000 asthmatic children have their condition made worse by exposure to secondhand smoke each year. Exposure to secondhand smoke causes eye, nose, and throat irritation. It may affect the cardiovascular system and some studies have linked exposure to secondhand smoke with the onset of chest pain. For publications about ETS, go to the IAQ Publications page, or contact EPA's Indoor Air Quality Information Clearinghouse (IAQ INFO), 800-438-4318 or (703) 356-4020.
Reducing Exposure to Environmental Tobacco Smoke
Don't smoke at home or permit others to do so. Ask smokers to smoke outdoors.
The 1986 Surgeon General's report concluded that physical separation of smokers and nonsmokers in a common air space, such as different rooms within the same house, may reduce - but will not eliminate - non-smokers' exposure to environmental tobacco smoke.
If smoking indoors cannot be avoided, increase ventilation in the area where smoking takes place.
Open windows or use exhaust fans. Ventilation, a common method of reducing exposure to indoor air pollutants, also will reduce but not eliminate exposure to environmental tobacco smoke. Because smoking produces such large amounts of pollutants, natural or mechanical ventilation techniques do not remove them from the air in your home as quickly as they build up. In addition, the large increases in ventilation it takes to significantly reduce exposure to environmental tobacco smoke can also increase energy costs substantially. Consequently, the most effective way to reduce exposure to environmental tobacco smoke in the home is to eliminate smoking there.
Do not smoke if children are present, particularly infants and toddlers.

Children are particularly susceptible to the effects of passive smoking. Do not allow baby-sitters or others who work in your home to smoke indoors. Discourage others from smoking around children. Find out about the smoking policies of the day care center providers, schools, and other care givers for your children. The policy should protect children from exposure to ETS.

BIOLOGICAL CONTAMINANTS

Biological contaminants include bacteria, molds, mildew, viruses, animal dander and cat saliva, house dust mites, cockroaches, and pollen. There are many sources of these pollutants. Pollens originate from plants; viruses are transmitted by people and animals; bacteria are carried by people, animals, and soil and plant debris; and household pets are sources of saliva and animal dander. The protein in urine from rats and mice is a potent allergen. When it dries, it can become airborne. Contaminated central air handling systems can become breeding grounds for mold, mildew, and other sources of biological contaminants and can then distribute these contaminants through the home.
By controlling the relative humidity level in a home, the growth of some sources of biologicals can be minimized. A relative humidity of 30-50 percent is generally recommended for homes. Standing water, water-damaged materials, or wet surfaces also serve as a breeding ground for molds, mildews, bacteria, and insects. House dust mites, the source of one of the most powerful biological allergens, grow in damp, warm environments.
Health Effects From Biological Contaminants
Some biological contaminants trigger allergic reactions, including hypersensitivity pneumonitis, allergic rhinitis, and some types of asthma. Infectious illnesses, such as influenza, measles, and chicken pox are transmitted through the air. Molds and mildews release disease-causing toxins. Symptoms of health problems caused by biological pollutants include sneezing, watery eyes, coughing, shortness of breath, dizziness, lethargy, fever, and digestive problems.
Allergic reactions occur only after repeated exposure to a specific biological allergen. However, that reaction may occur immediately upon re-exposure or after multiple exposures over time. As a result, people who have noticed only mild allergic reactions, or no reactions at all, may suddenly find themselves very sensitive to particular allergens.
Some diseases, like humidifier fever, are associated with exposure to toxins from microorganisms that can grow in large building ventilation systems. However, these diseases can also be traced to microorganisms that grow in home heating and cooling systems and humidifiers. Children, elderly people, and people with breathing problems, allergies, and lung diseases are particularly susceptible to disease-causing biological agents in the indoor air.
Reducing Exposure to Biological Contaminants
Install and use exhaust fans that are vented to the outdoors in kitchens and bathrooms and vent clothes dryers outdoors.
These actions can eliminate much of the moisture that builds up from everyday activities. There are exhaust fans on the market that produce little noise, an important consideration for some people. Another benefit to using kitchen and bathroom exhaust fans is that they can reduce levels of organic pollutants that vaporize from hot water used in showers and dishwashers.
Ventilate the attic and crawl spaces to prevent moisture build-up.
Keeping humidity levels in these areas below 50 percent can prevent water condensation on building materials.
If using cool mist or ultrasonic humidifiers, clean appliances according to manufacturer's instructions and refill with fresh water daily.
Because these humidifiers can become breeding grounds for biological contaminants, they have the potential for causing diseases such as hypersensitivity pneumonitis and humidifier fever. Evaporation trays in air conditioners, dehumidifiers, and refrigerators should also be cleaned frequently.
Thoroughly clean and dry water-damaged carpets and building materials (within 24 hours if possible) or consider removal and replacement.
Water-damaged carpets and building materials can harbor mold and bacteria. It is very difficult to completely rid such materials of biological contaminants.
Keep the house clean. House dust mites, pollens, animal dander, and other allergy-causing agents can be reduced, although not eliminated, through regular cleaning.
People who are allergic to these pollutants should use allergen-proof mattress encasements, wash bedding in hot (130 degrees farenheit) water, and avoid room furnishings that accumulate dust, especially if they cannot be washed in hot water. Allergic individuals should also leave the house while it is being vacuumed because vacuuming can actually increase airborne levels of mite allergens and other biological contaminants. Using central vacuum systems that are vented to the outdoors or vacuums with high efficiency filters may also be of help.
Take steps to minimize biological pollutants in basements.
Clean and disinfect the basement floor drain regularly. Do not finish a basement below ground level unless all water leaks are patched and outdoor ventilation and adequate heat to prevent condensation are provided. Operate a dehumidifier in the basement if needed to keep relative humidity levels between 30-50 percent.
To learn more about biological pollutants, read Biological Pollutants in Your Home issued by the U.S. Consumer Product Safety Commission and the American Lung Association. For contact information, see the section, "Where to Go For Additional Information."

STOVES, HEATERS, FIREPLACES, AND CHIMNEYS

In addition to environmental tobacco smoke, other sources of combustion products are unvented kerosene and gas space heaters, woodstoves, fireplaces, and gas stoves. The major pollutants released are carbon monoxide, nitrogen dioxide, and particles. Unvented kerosene heaters may also generate acid aerosols.
Combustion gases and particles also come from chimneys and flues that are improperly installed or maintained and cracked furnace heat exchangers. Pollutants from fireplaces and woodstoves with no dedicated outdoor air supply can be "back-drafted" from the chimney into the living space, particularly in weatherized homes.
Health Effects of Combustion Products
Carbon monoxide (CO) is a colorless, odorless gas that interferes with the delivery of oxygen throughout the body. At high concentrations it can cause unconsciousness and death. Lower concentrations can cause a range of symptoms from headaches, d izziness, weakness, nausea, confusion, and disorientation, to fatigue in healthy people and episodes of increased chest pain in people with chronic heart disease. The symptoms of carbon monoxide poisoning are sometimes confused with the flu or food poisoning. Fetuses, infants, elderly people, and people with anemia or with a history of heart or respiratory disease can be especially sensitive to carbon monoxide exposures.
Nitrogen dioxide (NO2) is a colorless, odorless gas that irritates the mucous membranes in the eye, nose, and throat and causes shortness of breath after exposure to high concentrations. There is evidence that high concentrations or continued exposure to low levels of nitrogen dioxide increases the risk of respiratory infection; there is also evidence from animal studies that repeated exposures to elevated nitrogen dioxide levels may lead, or contribute, to the development of lung disease such as emphysema. People at particular risk from exposure to nitrogen dioxide include children and individuals with asthma and other respiratory diseases.
Particles, released when fuels are incompletely burned, can lodge in the lungs and irritate or damage lung tissue. A number of pollutants, including radon and benzo(a)pyrene, both of which can cause cancer, attach to small particles that are inhaled and then carried deep into the lung.
Reducing Exposure to Combustion Products in Homes
Take special precautions when operating fuel-burning unvented space heaters.
Consider potential effects of indoor air pollution if you use an unvented kerosene or gas space heater. Follow the manufacturer's directions, especially instructions on the proper fuel and keeping the heater properly adjusted. A persistent yellow-tipped flame is generally an indicator of maladjustment and increased pollutant emissions. While a space heater is in use, open a door from the room where the heater is located to the rest of the house and open a window slightly.
Install and use exhaust fans over gas cooking stoves and ranges and keep the burners properly adjusted.
Using a stove hood with a fan vented to the outdoors greatly reduces exposure to pollutants during cooking. Improper adjustment, often indicated by a persistent yellow-tipped flame, causes increased pollutant emissions. Ask your gas company to adjust the burner so that the flame tip is blue. If you purchase a new gas stove or range, consider buying one with pilotless ignition because it does not have a pilot light that burns continuously. Never use a gas stove to heat your home. Always make certain the flue in your gas fireplace is open when the fireplace is in use.
Keep woodstove emissions to a minimum. Choose properly sized new stoves that are certified as meeting EPA emission standards.
Make certain that doors in old woodstoves are tight-fitting. Use aged or cured (dried) wood only and follow the manufacturer's directions for starting, stoking, and putting out the fire in woodstoves. Chemicals are used to pressure-treat wood; such wood should never be burned indoors. (Because some old gaskets in woodstove doors contain asbestos, when replacing gaskets refer to the instructions in the CPSC, ALA, and EPA booklet, Asbestos in Your Home, to avoid creating an asbestos problem. New gaskets are made of fiberglass.)
Have central air handling systems, including furnaces, flues, and chimneys, inspected annually andpromptly repair cracks or damaged parts.
Blocked, leaking, or damaged chimneys or flues release harmful combustion gases and particles and even fatal concentrations of carbon monoxide. Strictly follow all service and maintenance procedures recommended by the manufacturer, including those that tell you how frequently to change the filter. If manufacturer's instructions are not readily available, change filters once every month or two during periods of use. Proper maintenance is important even for new furnaces because they can also corrode and leak combustion gases, including carbon monoxide.

HOUSEHOLD PRODUCTS

Organic chemicals are widely used as ingredients in household products. Paints, varnishes, and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic, degreasing, and hobby products. Fuels are made up of organic chemicals. All of these products can release organic compounds while you are using them, and, to some degree, when they are stored.
EPA's Total Exposure Assessment Methodology (TEAM) studies found levels of about a dozen common organic pollutants to be 2 to 5 times higher inside homes than outside, regardless of whether the homes were located in rural or highly industrial areas. Additional TEAM studies indicate that while people are using products containing organic chemicals, they can expose themselves and others to very high pollutant levels, and elevated concentrations can persist in the air long after the activity is completed.
Health Effects of Household Chemicals
The ability of organic chemicals to cause health effects varies greatly, from those that are highly toxic, to those with no known health effect. As with other pollutants, the extent and nature of the health effect will depend on many factors including level of exposure and length of time exposed. Eye and respiratory tract irritation, headaches, dizziness, visual disorders, and memory impairment are among the immediate symptoms that some people have experienced soon after exposure to some organics. At present, not much is known about what health effects occur from the levels of organics usually found in homes. Many organic compounds are known to cause cancer in animals; some are suspected of causing, or are known to cause, cancer in humans.
Reducing Exposure to Household Chemicals
Follow label instructions carefully.
Potentially hazardous products often have warnings aimed at reducing exposure of the user. For example, if a label says to use the product in a well-ventilated area, go outdoors or in areas equipped with an exhaust fan to use it. Otherwise, open up windows to provide the maximum amount of outdoor air possible.
Throw away partially full containers of old or unneeded chemicals safely.
Because gases can leak even from closed containers, this single step could help lower concentrations of organic chemicals in your home. (Be sure that materials you decide to keep are stored not only in a well-ventilated area but are also safely out of reach of children.) Do not simply toss these unwanted products in the garbage can. Find out if your local government or any organization in your community sponsors special days for the collection of toxic household wastes. If such days are available, use them to dispose of the unwanted containers safely. If no such collection days are available, think about organizing one.
Buy limited quantities.
If you use products only occasionally or seasonally, such as paints, paint strippers, and kerosene for space heaters or gasoline for lawn mowers, buy only as much as you will use right away.
Keep exposure to emissions from products containing methylene chloride to a minimum.
Consumer products that contain methylene chloride include paint strippers, adhesive removers, and aerosol spray paints. Methylene chloride is known to cause cancer in animals. Also, methylene chloride is converted to carbon monoxide in the body and can cause symptoms associated with exposure to carbon monoxide. Carefully read the labels containing health hazard information and cautions on the proper use of these products. Use products that contain methylene chloride outdoors when possible; use indoors only if the area is well ventilated.
Keep exposure to benzene to a minimum.
Benzene is a known human carcinogen. The main indoor sources of this chemical are environmental tobacco smoke, stored fuels and paint supplies, and automobile emissions in attached garages. Actions that will reduce benzene exposure include eliminating smoking within the home, providing for maximum ventilation during painting, and discarding paint supplies and special fuels that will not be used immediately.
Keep exposure to perchloroethylene emissions from newly dry-cleaned materials to a minimum.
Perchloroethylene is the chemical most widely used in dry cleaning. In laboratory studies, it has been shown to cause cancer in animals. Recent studies indicate that people breathe low levels of this chemical both in homes where dry-cleaned goods are stored and as they wear dry-cleaned clothing. Dry cleaners recapture the perchloroethylene during the dry-cleaning process so they can save money by re-using it, and they remove more of the chemical during the pressing and finishing processes. Some dry cleaners, however, do not remove as much perchloroethylene as possible all of the time. Taking steps to minimize your exposure to this chemical is prudent. If dry-cleaned goods have a strong chemical odor when you pick them up, do not accept them until they have been properly dried. If goods with a chemical odor are returned to you on subsequent visits, try a different dry cleaner.

FORMALDEHYDE

Formaldehyde is an important chemical used widely by industry to manufacture building materials and numerous household products. It is also a by-product of combustion and certain other natural processes. Thus, it may be present in substantial concentrations both indoors and outdoors.
Sources of formaldehyde in the home include building materials, smoking, household products, and the use of unvented, fuel-burning appliances, like gas stoves or kerosene space heaters. Formaldehyde, by itself or in combination with other chemicals, serves a number of purposes in manufactured products. For example, it is used to add permanent-press qualities to clothing and draperies, as a component of glues and adhesives, and as a preservative in some paints and coating products.
In homes, the most significant sources of formaldehyde are likely to be pressed wood products made using adhesives that contain urea-formaldehyde (UF) resins. Pressed wood products made for indoor use include: particleboard (used as subflooring and shelving and in cabinetry and furniture); hardwood plywood paneling (used for decorative wall covering and used in cabinets and furniture); and medium density fiberboard (used for drawer fronts, cabinets, and furniture tops). Medium density fiberboard contains a higher resin-to-wood ratio than any other UF pressed wood product and is generally recognized as being the highest formaldehyde-emitting pressed wood product.
Other pressed wood products, such as softwood plywood and flake or oriented strandboard, are produced for exterior construction use and contain the dark, or red/black-colored phenol-formaldehyde (PF) resin. Although formaldehyde is present in both types of resins, pressed woods that contain PF resin generally emit formaldehyde at considerably lower rates than those containing UF resin.
Since 1985, the Department of Housing and Urban Development (HUD) has permitted only the use of plywood and particleboard that conform to specified formaldehyde emission limits in the construction of prefabricated and mobile homes. In the past, some of these homes had elevated levels of formaldehyde because of the large amount of high-emitting pressed wood products used in their construction and because of their relatively small interior space.
The rate at which products like pressed wood or textiles release formaldehyde can change. Formaldehyde emissions will generally decrease as products age. When the products are new, high indoor temperatures or humidity can cause increased release of formaldehyde from these products.
During the 1970s, many homeowners had urea-formaldehyde foam insulation (UFFI) installed in the wall cavities of their homes as an energy conservation measure. However, many of these homes were found to have relatively high indoor concentrations of formaldehyde soon after the UFFI installation. Few homes are now being insulated with this product. Studies show that formaldehyde emissions from UFFI decline with time; therefore, homes in which UFFI was installed many years ago are unlikely to have high levels of formaldehyde now.
Health Effects of Formaldehyde
Formaldehyde, a colorless, pungent-smelling gas, can cause watery eyes, burning sensations in the eyes and throat, nausea, and difficulty in breathing in some humans exposed at elevated levels (above 0.1 parts per million). High concentrations may trigger attacks in people with asthma. There is evidence that some people can develop a sensitivity to formaldehyde. It has also been shown to cause cancer in animals and may cause cancer in humans.
Reducing Exposure to Formaldehyde in Homes
Ask about the formaldehyde content of pressed wood products,including building materials, cabinetry, and furniture before you purchase them.
If you experience adverse reactions to formaldehyde, you may want to avoid the use of pressed wood products and other formaldehyde-emitting goods. Even if you do not experience such reactions, you may wish to reduce your exposure as much as possible by purchasing exterior-grade products, which emit less formaldehyde. For further information on formaldehyde and consumer products, call the EPA Toxic Substance Control Act (TSCA) assistance line (202-554-1404).
Some studies suggest that coating pressed wood products with polyurethane may reduce formaldehyde emissions for some period of time. To be effective, any such coating must cover all surfaces and edges and remain intact. Increase the ventilation and carefully follow the manufacturernstructions while applying these coatings. (If you are sensitive to formaldehyde, check the label contents before purchasing coating products to avoid buying products that contain formaldehyde, as they will emit the chemical for a short time after application.) Maintain moderate temperature and humidity levels and provide adequate ventilation. The rate at which formaldehyde is released is accelerated by heat and may also depend somewhat on the humidity level. Therefore, the use of dehumidifiers and air conditioning to control humidity and to maintain a moderate temperature can help reduce formaldehyde emissions. (Drain and clean dehumidifier collection trays frequently so that they do not become a breeding ground for microorganisms.) Increasing the rate of ventilation in your home will also help in reducing formaldehyde levels.